

Gas phase hydroformylation with the post-modified Metal-Organic Framework NU-1000

Silje F. Håkonson, Morten Frøseth, Bjørnar Arstad, Terje Didriksen, Martin F. Sunding, Ole Swang, Knut Thorshaug, <u>Richard H. Heyn</u> (<u>rhh@sintef.no</u>), SINTEF Industry, Oslo Norway

C123 – Methane oxidative conversion and hydroformylation to propylene H2020 project 01.2019 – 06.2023

• The world's largest industrial *homogeneous* catalytic process

R

Linear

Branched or internal

- R + CO + H₂ [cat = Rh or Co]
- Preferred industrial conditions
 - Rh catalyst
 - Large excess of phosphines
 - High alkene conversions and aldehyde selectivities (> 95 %)
- No industrial heterogeneous, gas phase process
 - State-of-the-art gas phase hydroformylation does not provide relevant conversions and selectivities
 - Cannot in general access same homogeneous mechanism
 - Supported metal catalysts in general lack the same electronic playing field as homogeneous catalysts

- Propene to butyraldehyde (R = Me) is most common industrial hydroformylation
- For ethene (R = H), only one aldehyde product

18-electron Rh(I) species
18-electron Rh(III) species

Hypothesis and choice of NU-1000

Our hypothesis for bridging homogeneous and heterogeneous catalysis: Could a MOF with an excess of phosphine ligands in the pores mimic a homogeneous mechanism and provide stable gas phase hydroformylation?

SINTEF

Large, accessible pores

 $Zr_6(\mu-O)_4(\mu-OH)_4(H_2O)_4(OH)_4$, 8-connected nodes

Acc. Chem. Res. **2017**, *50*, 805-813 acid) py

1,3,6,8-tetrakis(*p*-benzoic acid) pyrene (H₄TBAPy)

Solvent-Assisted Ligand Incorporation (SALI)

(a)

n=2, 6, 8

X= -Br,

Y=-H, -F, -Br, -I -OH, -SH, -NH₂,

• Reaction of carboxylic or phosphonic acids with OH/H_2O groups on Zr_6 nodes

Can add up to 4 ligands with this method

Acc. Chem. Res. 2017, 50, 805-813

 \bigcirc

SINTEF

J. Phys. Chem. Lett. **2014**, *5*, 3716-3723

J. Am. Chem. Soc. 2020, 142, 21110-21121

SINTEF Incorporation of Rh

- Rh(acac)(CO)₂ added to a toluene suspension of P@NU-1000
- Two targeted Rh concentrations

8

- 5 % Rh Rh(5%)-P@NU-1000 or 2-5%
 - Maximum that can be added with one impregnation reaction
- 1 % Rh Rh(1%)-P@NU-1000 or 2-1%

				<u>Surface area (BET)</u>		
	ICP	data		NU-1000		
	% P	% Rh	P/Rh	(synthesized)	2275 m²/g	
2-5%	2.34	4.24	1.83	P@NU-1000	$1456 \text{ m}^2/\text{g}$	
2-1%	2.12	0.77	9.1	2-5% 2-1%	$1183 \text{ m}^2/\text{g}$ 1232 m ² /g	

 $\frac{\sqrt{PS}}{\sqrt{PS}} + \frac{\sqrt{PS}}{\sqrt{PS}} + \frac{\sqrt{PS}}{$

No Rh(0)

EU-project Horizon 2020 GA No. 814557 C123 Methane oxidative conversion and hydroformylation to propylene Technology for a better society

2Theta

2-1%

2-5%

20

P@NU-1000

30

40

50

IR spectrum of Rh-P@NU-1000 materials

SINTEF

- Not a Rh(CO)₂ species
 - Analogous monomeric dicarbonyl species have two CO stretching frequencies around 2010 cm⁻¹ and 2050 cm⁻¹
- $Rh(acac)(CO)(PPh_3): v_{CO} = 1980 \text{ cm}^{-1}$ J. Mol. Catal. **1993**, 80, 189-200
- $Rh(O-acac)(CO)(P^{i}Pr_{2}Ph)_{2}: v_{CO} = 1954 \text{ cm}^{-1}$

J. Chem. Soc., Dalton Trans. 1988, 895-897

- Rh(abta)(CO)PPh₃: $v_{CO} = 1990 \text{ cm}^{-1}$
- Rh(abta)(CO)(PPh₃)₂: ν_{CO} = 1960 cm⁻¹

J. Chem. Soc., Dalton Trans. 1996, 1701-1706

v_{co} = 1977 cm⁻¹ = Rh(CO)(P*)₂ species
v_{co} = 1993 cm⁻¹ = Rh(CO)P* species

Node-bound DPPB (P*) is a less electron donating phosphine than PPh₃

 Calculations with an analogous MOF-808 material (1.8 nm pores) showed diphosphine complex to be less stable than the monophosphine complex.

ACS Catal. 2023, 13, 4193-4204.

- Lower limit of the bonding energy is 4 kJ/mol.
- Larger pores/longer linker of NU-1000 permit formation of supported diphosphine Rh complexes.

Formulation of Rh-P@NU-1000

- Formulation required for gas phase testing not straightforward for MOFs
- Two formulation procedures to provide 210 μ m 500 μ m particles
 - Pelletization (3-1% and 3-5%)
 - Extrusion from a $PVA/H_2O/^iPrOH$ (4:45:45 weight ratio) paste
 - PVA formulation done both before (5-1% and 5-5%) and after Rh addition (6-5%)
- No apparent reduction in crystallinity nor significant decrease in surface area or pore volume

ICP data	% P	% Rh	P/Rh	Surf	ace area (BET)	Total Pore Vol
2-5%	2.34	4.24	1.83	2-5%	1183 m²/g	0.661 m ³ /g
	2.4.2	0 77	0.4	2-1%	1232 m²/g	0.755 m ³ /g
2-1%	2.12	0.77	9.1	3-5%	1102 m²/g	0.611 m³/g
5-5%	2.1	3.6	2.0	3-1%	1110 m²/g	0.673 m ³ /g
5-1%	1.4	0.44	10.4	5-5%	1099 m²/g	0.610 m³/g
0 =/0	2.07		4 70	5-1%	1031 m²/g	0.626 m³/g
b-5% 2.07	2.07	4.04	1.72	6-5%	1111 m²/g	0.624 m ³ /g

50

Extended testing and control experiments

Neither PVA-P@NU-1000 (4) nor Rh(1%)-PVA@NU-1000 (7) showed any catalytic activity between 100 $^{\circ}C - 120 ^{\circ}C$.

<u>Surfa</u>	<u>ce area (BET)</u>	ICP data	% Rh
4 7	1002 m²/g 1296 m²/g	7	0.74
nsityIntensity	hand		4
Inter	U		7

20

2Theta

30

AC

0

10

- TOF estimated to be between 100 $h^{\text{-1}}$ 1000 $h^{\text{-1}}$
- **3-1%** is more active than **3-5%** on a Rh wt basis.
- Decrease in activity of 5-5% hypothesized to be the result of phosphine oxidation/rearrangement

- One of the most stable and active heterogenous catalysts for gas phase hydroformylation
 - Ethene conversion only exceeded by a Rh-loaded polymer made from vinyl-functionalized PPh₃
 - Not that different from Fibercat

J. Mol. Catal A **2015**, 404-405, 211-217

- Despite promising results, industrialization will require dramatic decrease in the cost and environmental impact of NU-1000
 - H₄TBAPy linker very expensive
 - NU-1000 synthesis requires large amounts of solvent
- The most active and stable catalyst requires further research
 - Best use of Rh
 - Better understanding of changes in phosphine structure
 - Minimization of aldol condensation what is acid or base catalyst?

- Post-modified NU-1000 materials have been synthesized via SALI addition of a PPh₃ analogue and impregnation with Rh(CO)₂(acac).
- IR, NMR and modelling data support the formation of a unique Rh(CO)(acac)(P*)₂ moiety in the pores, that is the likely catalytic site for gas phase hydroformylation.
- Material can be readily formulated via either pelletization or extrusion without loss of structural integrity, surface area or pore volume.
- Material is a stable catalyst for gas phase hydroformylation for up to 9 days with ethene conversions of > 50 % and propanal selectivities over 97 %.
- Post-reaction characterization shows changes in the ³¹P MAS spectrum, consistent with either some phosphine oxidation or formation of other catalytic Rh-P sites, without structural degradation or significant loss in activity and selectivity.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 837733

- C123 partners
 - CNRS Lyon (Jerome Canivet) Similar concept with MOF-808 (ACS Catal. 2023, 13, 4193-4204)
 - Univ. Gent (Joris Thybaut) Microkinetic modelling of gas phase hydroformylation
 - Johnson Matthey Hydroformylation Work Package Leader
 - Arkema (Jean-Luc Dubois) Discussions and suggestions

Technology for a better society